PHYSICS CAPACITY TRANSCRIPT

LEARNER＇S NAME： \qquad

Purpose \＆ Vision：	Understand and Apply Physics Concepts	$\begin{aligned} & \mathbf{T} \\ & \mathbf{O} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$				5 0 0 3 3	3－D
CAPACITY	CAPACITY BREAKDOWN	0					PORTFOLIO
Measurement and Data Analysis	Use Scientific Notation	1	＊				Machines and Efficienc
	Use significant figures in problems	2					Machines and Efficienc
	Estimate results	3	大				
	Know metric system and how to convert units	4	大				Machines and Efficienc
	Use dimensional analysis in problem solving	5	大				
	Develop personal estimates of length，area，vol．，speed measurements	6	大				Machines and Efficienc
Motion	Define speed and give units	8	大				
	Distinguish between speed \＆velocity	9	x				
	Define acceleration and provide units	10	大				
	Describe the motion of an object in free fall from rest	11	大				
	Calculate velocity，average velocity，\＆acceleration	12	大				
	Use distance－time \＆speed time graphs	13	大				
	Use kinematic eqns．to solve free fall \＆uniform accel．problems	14	大				
Newton＇s Laws	Define inertia \＆state Newton＇s First Law	15	x				
	Distinguish between mass，volume，\＆weight	16	x				Mechanical advantage
	Distinguish between kilogram and newton as units of measure	17	x				Mechanical advantage
	Explain why something not connected to the ground keeps up	18	大				Mechanical advantage
	Resolve object on a slope into weight components（parl \＆perp）	19	大				
	Define \＆explain net force	20	大				Mechanical advantage
	State relationship between net force，mass，\＆accel．（2nd Law）	21	大				Mechanical advantage
	Describe effect of friction on stationary \＆moving object	22	大				Mechanical advantage
	Determine coefficients of static and kinetic friction	23	大				
	Determine pressure based on force and unit area	24	x				

	Apply 2nd Law to explain why free fall accel. not dependent on mass	25	*				Mechanical advantage
	Explain \& determine terminal velocity	26	*				
	Explain why at least two objects are invloved whenever a force acts	27	*				
			LEARNING PROCESS				
		$\begin{array}{\|l\|} \hline \mathrm{T} \\ \mathrm{O} \\ \mathrm{~T} \\ \mathrm{~A} \\ \mathrm{~L} \\ \hline \end{array}$		$\stackrel{8}{8}$ $\frac{0}{3}$ \vdots \vdots 		$\begin{aligned} & \varepsilon \\ & \underline{0} \\ & \stackrel{0}{3} \end{aligned}$	$\begin{gathered} \text { 3-D } \\ \text { PORTFOLIO } \end{gathered}$
CAPACITY	CAPACITY BREAKDOWN						
Newton's Laws	State Newton's 3rd Law	28	*				
continued	Given an action force, identify reaction force	29	*				
	Explain why accel. caused by action \& reaction forces do not have to $=$	30	*				
	Explain why an action force is not cancelled by reaction force	31	+				
Vectors \&	Distinguish between vector \& scalar quantity	32	*				
Projectile	Draw vector diagrams for velocity, forces, etc.	33	*				
	Resolve a vector into horizontal \& vertical components	34	+				
	Use trigonometry to solve for vector components \& resultants	35	x				
	Solve equilibrium vector problems	36	+				
	Resolve projectile motion into vertical \& horizontal components	37	+				
	Solve projectile motion problems	38	*				
Momentum	Define momentum	39	*				
	Define impulse and relate to momentum	40	*				
	Give examples of when size of force $\&$ time affect momentum	41	*				
	Explain why impulses greater when object bounces than simply to rest	42	*				
	State law of conservation of momentum	43	+				
	Distinguish between inelastic \& elastic collisions	44	+				
	Solve sticky, explosion, and bouncing collision problems	45	*				
	Solve impulse and conservation of momentum problems	46	*				
Energy	Determine work done, given force \& distance moved	47	+				
	Determine amount of power required, given work \& time	48	*				
	Solve work and power problems	49	*				
	Define work in terms of energy	50	*				

	隹					
	nsax					
come						
		,				
fineest						
	隹					

Solve gravitational field problems	84	丸				
		85				

	CAPACITY BREAKDOWN		LEARNING PROCESS				
		$\begin{aligned} & \hline \mathbf{T} \\ & \mathbf{O} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$	E	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \frac{0}{3} \\ & 0 \\ & \mathbf{5} \end{aligned}$		$\begin{aligned} & \text { 틈 } \\ & \text { on } \\ & 3 \\ & 3 \end{aligned}$	3－D
CAPACITY							PORTFOLIO
Electric Charge， Fields，and Potential	Discuss electrical forces and charges	88	＊				
	Discuss conservation of charge	89	※				
	Introduce Colomb＇s Law and do problems	90	丸				
	Describe the nature of conductors and insulators	91	丸				
	Discuss different types of charging	92	＊				
	Define electric field and electric field lines	93	丸				
	Solve electric potential and energy storage problems	94	大				
	Describe how a Van de Graff Generator works	95	＊				
	Introduce current as a flow of charge	96	＊				
Electric Current an and Circuit Analysis	Discuss voltage sources	97	大				
	Describe electric resistance and solve Ohm＇s law problems	98	大				
	Distinguish between AC and DC	99	大				
	Speed and source of electrons in a circuit	100	大				
	Discuss Electric Power and solve problems	101	大				
	Introduce electric circuits and distinguish between series and parallel	102	大				
	Discuss schematic diagrams	103	＊				

| Light as a Wave | Describe how interference applies to light waves | 137 | $\not \subset$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Solve wave length and slit separation problems | 138 | $\not \subset$ | | | | |

TJW 5/99 mta/common/science/physics
of common tools

