PHYSICS CAPACITY TRANSCRIPT

LEARNER'S NAMI	≣:	LEARNING PROCESS			PROCESS		
Purpose & Vision:	Understand and Apply Physics Concepts	T O T A L	INFORMATION	KNOWLEDGE	WOH-WONX	MODSIM	3-D
CAPACITY	CAPACITY BREAKDOWN	0					PORTFOLIO
Measurement	Use Scientific Notation	1	★				Machines and Efficienc
and Data	Use significant figures in problems	2					Machines and Efficience
Analysis	Estimate results	3	*				
	Know metric system and how to convert units	4	★				Machines and Efficienc
	Use dimensional analysis in problem solving	5	*				
	Develop personal estimates of length, area, vol., speed measurements	6	×				Machines and Efficienc
Motion	Define speed and give units	8	×				
	Distinguish between speed & velocity	9	*				
	Define acceleration and provide units	10	*				
	Describe the motion of an object in free fall from rest	11	*				
	Calculate velocity, average velocity, & acceleration	12	*				
	Use distance-time & speed time graphs	13	*				
	Use kinematic eqns. to solve free fall & uniform accel. problems	14	*				
Newton's Laws	Define inertia & state Newton's First Law	15	★				
	Distinguish between mass, volume, & weight	16	*				Mechanical advantage
	Distinguish between kilogram and newton as units of measure	17	*				Mechanical advantage
	Explain why something not connected to the ground keeps up	18	*				Mechanical advantage
	Resolve object on a slope into weight components (parl & perp)	19	★				
	Define & explain net force	20	*				Mechanical advantage
	State relationship between net force, mass, & accel. (2nd Law)	21	オ				Mechanical advantage
	Describe effect of friction on stationary & moving object	22	*				Mechanical advantage
	Determine coefficients of static and kinetic friction	23	オ				
	Determine pressure based on force and unit area	24	*				

	Apply 2nd Law to explain why free fall accel. not dependent on mass	25	*				Mechanical advantage
	Explain & determine terminal velocity	26	*				
	Explain why at least two objects are invloved whenever a force acts	27	*				
					LEAR	NING	PROCESS
		T O T A L	Inform.	Knowledge	KnowHow	Wisdom	3-D
CAPACITY	CAPACITY BREAKDOWN						PORTFOLIO
Newton's Laws	State Newton's 3rd Law	28	*				
continued	Given an action force, identify reaction force	29	*				
	Explain why accel. caused by action & reaction forces do not have to =	30	*				
	Explain why an action force is not cancelled by reaction force	31	*				
Vectors &	Distinguish between vector & scalar quantity	32	*				
Projectile	Draw vector diagrams for velocity, forces, etc.	33	*				
	Resolve a vector into horizontal & vertical components	34	*				
	Use trigonometry to solve for vector components & resultants	35	*				
	Solve equilibrium vector problems	36	*				
	Resolve projectile motion into vertical & horizontal components	37	*				
	Solve projectile motion problems	38	*				
Momentum	Define momentum	39	*				
	Define impulse and relate to momentum	40	*				
	Give examples of when size of force & time affect momentum	41	*				
	Explain why impulses greater when object bounces than simply to rest	42	*				
	State law of conservation of momemtum	43	オ				
	Distinguish between inelastic & elastic collisions	44	*				
	Solve sticky, explosion, and bouncing collision problems	45	*				
	Solve impulse and conservation of momentum problems	46	*				
Energy	Determine work done, given force & distance moved	47	*				
	Determine amount of power required, given work & time	48	*				
	Solve work and power problems	49	*				
	Define work in terms of energy	50	*				

1	Distinguish between mechanical, potential, & kinetic energy	51	★		
	Explain when grav. PE changes & not	52	*		
	Describe how kinetic energy depends on speed	53	*		
	State the law of conservation of energy	54	*		
	Solve conservation of energy problems	55	*		
	Describe the function of a lever, pulley, inclined plane, & wedge	56	*		
	Give examples when mechanical advantage > 1 and < 1	57	*		
	Explain why no machine can have efficiency of 100%	58	¥		
	Solve mechanical advantage & efficiency problems	59	¥		
Circular Motion	Distinguish between rotate & revolve	60	*		
Center of	Distinguish between linear speed & rotational speed	61	*		
Gravity &	Give examples of centripetal force	62	*		
Rotational	Describe resulting motion if centripetal force stops	63	*		
Mechanics	Explain why incorrect to say centifugal force pulls outward	64	オ		
	Describe how you can simulate gravity in a space colony	65	オ		
	Solve period, frequency, & speed problems	66	*		
	Solve centripetal acceleration & centripetal force problems	67	オ		
	Describe center of gravity (COG)	68	オ		
	Use a plumb line & bob to find center of gravity	69	オ		
	Given center of gravity and area of support, predict if will topple	70	オ		
	Distinguish between stable, unstable, & neutral equilibrium	71	*		
	Define torque & describe what it depends on	72	オ		
	Describe the conditions for one torque to balance another	73	オ		
	Given COG & position & direction of forces, tell whether rotation	74	*		
	Solve torque problems	75	*		
	Describe what rotational inertia depends on	76	オ		
	Define angular momentum and when it reamins the same & changes	77	*		
	Solve angular momentum problems	78	オ		
Universal	State Newton's law of universal gravitation	79	*		
Gravitation	Explain the significance of the inverse-square law	80	*		
	Distinguish between g (accel. gravity) and G (gravitational constant)	81	*		
	Describe gravitational field	82	*		
	Solve universal gravitation problems	83	*		

Solve gravitational field problems	84	*		
	85			
	86			

	CAPACITY BREAKDOWN				LEAR	NING	PROCESS
		T O T A L	Inform.	Knowledge	KnowHow	Wisdom	3-D
CAPACITY							PORTFOLIO
Electric Charge,	Discuss electrical forces and charges	88	*				
Fields, and	Discuss conservation of charge	89	オ				
Potential	Introduce Colomb's Law and do problems	90	オ				
	Describe the nature of conductors and insulators	91	*				
	Discuss different types of charging	92	オ				
	Define electric field and electric field lines	93	オ				
	Solve electric potential and energy storage problems	94	オ				
	Describe how a Van de Graff Generator works	95	オ				
	Introduce current as a flow of charge	96	オ				
Electric Current a	Discuss voltage sources	97	*				
and Circuit	Describe electric resistance and solve Ohm's law problems	98	*				
Analysis	Distinguish between AC and DC	99	オ				
	Speed and source of electrons in a circuit	100	*				
	Discuss Electric Power and solve problems	101	*				
	Introduce electric circuits and distinguish between series and parallel	102	オ				
	Discuss schematic diagrams	103	オ				

	Explain how to combine resistors in a compound circuit	104	★		
	Solve for voltage, current, resistance and capacitance in circuits	105	*		
	Explain magnetic poles and magnetic fields	106	*		
Magnetism and	Discuss electric currents and magnetic fields	107	オ		
Magnetic Fields	Explain magnetic forces on moving charged particles and current	108	*		
	Introduce electromagnetic Induction	109	*		
	Explain Faraday's Law	110	*		
	Discuss the properties of transformers	111	*		
	Explain induction of electric and magnetic fields	112	*		
	Solve magnetic forces, fields, and electromagnetic induction problems	113	*		
	Explain vibration of a pendulum	114	*		
Vibrations and	Decribe the nature of waves and motion and speed	115	*		
Waves	Distinguish between transverse and longitudinal waves	116	オ		
	Explain constructive and destructive interference	117	オ		
	Discuss the Doppler effect	118	オ		
	What are bow and shock waves	119	オ		
	Solve simple harmonic motion problems	120	オ		
	Solve wave motion, Doppler effect, and standing wave problems	121	オ		
	Explain the origin of sound	122	オ		
Sound	Discuss media that transmit sound and the coresponding speeds	123	オ		
	Explain forced vibrations, natural frequency and resonance	124	オ		
	Demonstrate interference and beats	125	*		
	Solve speed of light problems	126	オ		
Light, Color,	Explain electromagnetic spectrum	127	オ		
Reflection and	Distinguish between color by reflection and color by transmission	128	オ		
Refraction	Solve Reflection Problems	129	オ		
	Solve Angle of Incidence Problems	130	オ		
	Solve Lens Problems	131	オ		
Geometric	Solve Refraction Problems	132	*		
Optics	Solve Critical Angle Problems	133	*		
	Construct Images using Ray Diagrams	134	*		
	Describe the function of a common optical instrument	135	*		
	Describe the defraction of light waves	136	*		

Light as a Wave	Describe how interference applies to light waves	137	*		
	Solve wave length and slit separation problems	138	*		
		139			

TJW 5/99 mta/common/science/physics

y y y

зy

of common tools of common tools of common tools

of common tools of common tools of common tools of common tools, Machines and Efficiency